\(\int \sqrt {d+e x} \sqrt {a+c x^2} \, dx\) [658]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [B] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 21, antiderivative size = 362 \[ \int \sqrt {d+e x} \sqrt {a+c x^2} \, dx=-\frac {4 d \sqrt {d+e x} \sqrt {a+c x^2}}{15 e}+\frac {2 (d+e x)^{3/2} \sqrt {a+c x^2}}{5 e}+\frac {4 \sqrt {-a} \left (c d^2-3 a e^2\right ) \sqrt {d+e x} \sqrt {1+\frac {c x^2}{a}} E\left (\arcsin \left (\frac {\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}}{\sqrt {2}}\right )|-\frac {2 a e}{\sqrt {-a} \sqrt {c} d-a e}\right )}{15 \sqrt {c} e^2 \sqrt {\frac {\sqrt {c} (d+e x)}{\sqrt {c} d+\sqrt {-a} e}} \sqrt {a+c x^2}}-\frac {4 \sqrt {-a} d \left (c d^2+a e^2\right ) \sqrt {\frac {\sqrt {c} (d+e x)}{\sqrt {c} d+\sqrt {-a} e}} \sqrt {1+\frac {c x^2}{a}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}}{\sqrt {2}}\right ),-\frac {2 a e}{\sqrt {-a} \sqrt {c} d-a e}\right )}{15 \sqrt {c} e^2 \sqrt {d+e x} \sqrt {a+c x^2}} \]

[Out]

2/5*(e*x+d)^(3/2)*(c*x^2+a)^(1/2)/e-4/15*d*(e*x+d)^(1/2)*(c*x^2+a)^(1/2)/e+4/15*(-3*a*e^2+c*d^2)*EllipticE(1/2
*(1-x*c^(1/2)/(-a)^(1/2))^(1/2)*2^(1/2),(-2*a*e/(-a*e+d*(-a)^(1/2)*c^(1/2)))^(1/2))*(-a)^(1/2)*(e*x+d)^(1/2)*(
1+c*x^2/a)^(1/2)/e^2/c^(1/2)/(c*x^2+a)^(1/2)/((e*x+d)*c^(1/2)/(e*(-a)^(1/2)+d*c^(1/2)))^(1/2)-4/15*d*(a*e^2+c*
d^2)*EllipticF(1/2*(1-x*c^(1/2)/(-a)^(1/2))^(1/2)*2^(1/2),(-2*a*e/(-a*e+d*(-a)^(1/2)*c^(1/2)))^(1/2))*(-a)^(1/
2)*(1+c*x^2/a)^(1/2)*((e*x+d)*c^(1/2)/(e*(-a)^(1/2)+d*c^(1/2)))^(1/2)/e^2/c^(1/2)/(e*x+d)^(1/2)/(c*x^2+a)^(1/2
)

Rubi [A] (verified)

Time = 0.25 (sec) , antiderivative size = 362, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.286, Rules used = {749, 847, 858, 733, 435, 430} \[ \int \sqrt {d+e x} \sqrt {a+c x^2} \, dx=-\frac {4 \sqrt {-a} d \sqrt {\frac {c x^2}{a}+1} \left (a e^2+c d^2\right ) \sqrt {\frac {\sqrt {c} (d+e x)}{\sqrt {-a} e+\sqrt {c} d}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}}{\sqrt {2}}\right ),-\frac {2 a e}{\sqrt {-a} \sqrt {c} d-a e}\right )}{15 \sqrt {c} e^2 \sqrt {a+c x^2} \sqrt {d+e x}}+\frac {4 \sqrt {-a} \sqrt {\frac {c x^2}{a}+1} \sqrt {d+e x} \left (c d^2-3 a e^2\right ) E\left (\arcsin \left (\frac {\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}}{\sqrt {2}}\right )|-\frac {2 a e}{\sqrt {-a} \sqrt {c} d-a e}\right )}{15 \sqrt {c} e^2 \sqrt {a+c x^2} \sqrt {\frac {\sqrt {c} (d+e x)}{\sqrt {-a} e+\sqrt {c} d}}}+\frac {2 \sqrt {a+c x^2} (d+e x)^{3/2}}{5 e}-\frac {4 d \sqrt {a+c x^2} \sqrt {d+e x}}{15 e} \]

[In]

Int[Sqrt[d + e*x]*Sqrt[a + c*x^2],x]

[Out]

(-4*d*Sqrt[d + e*x]*Sqrt[a + c*x^2])/(15*e) + (2*(d + e*x)^(3/2)*Sqrt[a + c*x^2])/(5*e) + (4*Sqrt[-a]*(c*d^2 -
 3*a*e^2)*Sqrt[d + e*x]*Sqrt[1 + (c*x^2)/a]*EllipticE[ArcSin[Sqrt[1 - (Sqrt[c]*x)/Sqrt[-a]]/Sqrt[2]], (-2*a*e)
/(Sqrt[-a]*Sqrt[c]*d - a*e)])/(15*Sqrt[c]*e^2*Sqrt[(Sqrt[c]*(d + e*x))/(Sqrt[c]*d + Sqrt[-a]*e)]*Sqrt[a + c*x^
2]) - (4*Sqrt[-a]*d*(c*d^2 + a*e^2)*Sqrt[(Sqrt[c]*(d + e*x))/(Sqrt[c]*d + Sqrt[-a]*e)]*Sqrt[1 + (c*x^2)/a]*Ell
ipticF[ArcSin[Sqrt[1 - (Sqrt[c]*x)/Sqrt[-a]]/Sqrt[2]], (-2*a*e)/(Sqrt[-a]*Sqrt[c]*d - a*e)])/(15*Sqrt[c]*e^2*S
qrt[d + e*x]*Sqrt[a + c*x^2])

Rule 430

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(1/(Sqrt[a]*Sqrt[c]*Rt[-d/c, 2]
))*EllipticF[ArcSin[Rt[-d/c, 2]*x], b*(c/(a*d))], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && Gt
Q[a, 0] &&  !(NegQ[b/a] && SimplerSqrtQ[-b/a, -d/c])

Rule 435

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]/(Sqrt[c]*Rt[-d/c, 2]))*Ell
ipticE[ArcSin[Rt[-d/c, 2]*x], b*(c/(a*d))], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[a, 0
]

Rule 733

Int[((d_) + (e_.)*(x_))^(m_)/Sqrt[(a_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2*a*Rt[-c/a, 2]*(d + e*x)^m*(Sqrt[1
+ c*(x^2/a)]/(c*Sqrt[a + c*x^2]*(c*((d + e*x)/(c*d - a*e*Rt[-c/a, 2])))^m)), Subst[Int[(1 + 2*a*e*Rt[-c/a, 2]*
(x^2/(c*d - a*e*Rt[-c/a, 2])))^m/Sqrt[1 - x^2], x], x, Sqrt[(1 - Rt[-c/a, 2]*x)/2]], x] /; FreeQ[{a, c, d, e},
 x] && NeQ[c*d^2 + a*e^2, 0] && EqQ[m^2, 1/4]

Rule 749

Int[((d_) + (e_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(d + e*x)^(m + 1)*((a + c*x^2)^p/(e
*(m + 2*p + 1))), x] + Dist[2*(p/(e*(m + 2*p + 1))), Int[(d + e*x)^m*Simp[a*e - c*d*x, x]*(a + c*x^2)^(p - 1),
 x], x] /; FreeQ[{a, c, d, e, m}, x] && NeQ[c*d^2 + a*e^2, 0] && GtQ[p, 0] && NeQ[m + 2*p + 1, 0] && ( !Ration
alQ[m] || LtQ[m, 1]) &&  !ILtQ[m + 2*p, 0] && IntQuadraticQ[a, 0, c, d, e, m, p, x]

Rule 847

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[g*(d + e*x)^
m*((a + c*x^2)^(p + 1)/(c*(m + 2*p + 2))), x] + Dist[1/(c*(m + 2*p + 2)), Int[(d + e*x)^(m - 1)*(a + c*x^2)^p*
Simp[c*d*f*(m + 2*p + 2) - a*e*g*m + c*(e*f*(m + 2*p + 2) + d*g*m)*x, x], x], x] /; FreeQ[{a, c, d, e, f, g, p
}, x] && NeQ[c*d^2 + a*e^2, 0] && GtQ[m, 0] && NeQ[m + 2*p + 2, 0] && (IntegerQ[m] || IntegerQ[p] || IntegersQ
[2*m, 2*p]) &&  !(IGtQ[m, 0] && EqQ[f, 0])

Rule 858

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[g/e, Int[(d
+ e*x)^(m + 1)*(a + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + c*x^2)^p, x], x] /; FreeQ[{a,
c, d, e, f, g, m, p}, x] && NeQ[c*d^2 + a*e^2, 0] &&  !IGtQ[m, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {2 (d+e x)^{3/2} \sqrt {a+c x^2}}{5 e}+\frac {2 \int \frac {(a e-c d x) \sqrt {d+e x}}{\sqrt {a+c x^2}} \, dx}{5 e} \\ & = -\frac {4 d \sqrt {d+e x} \sqrt {a+c x^2}}{15 e}+\frac {2 (d+e x)^{3/2} \sqrt {a+c x^2}}{5 e}+\frac {4 \int \frac {2 a c d e-\frac {1}{2} c \left (c d^2-3 a e^2\right ) x}{\sqrt {d+e x} \sqrt {a+c x^2}} \, dx}{15 c e} \\ & = -\frac {4 d \sqrt {d+e x} \sqrt {a+c x^2}}{15 e}+\frac {2 (d+e x)^{3/2} \sqrt {a+c x^2}}{5 e}+\frac {1}{15} \left (2 \left (3 a-\frac {c d^2}{e^2}\right )\right ) \int \frac {\sqrt {d+e x}}{\sqrt {a+c x^2}} \, dx+\frac {1}{15} \left (2 d \left (a+\frac {c d^2}{e^2}\right )\right ) \int \frac {1}{\sqrt {d+e x} \sqrt {a+c x^2}} \, dx \\ & = -\frac {4 d \sqrt {d+e x} \sqrt {a+c x^2}}{15 e}+\frac {2 (d+e x)^{3/2} \sqrt {a+c x^2}}{5 e}+\frac {\left (4 a \left (3 a-\frac {c d^2}{e^2}\right ) \sqrt {d+e x} \sqrt {1+\frac {c x^2}{a}}\right ) \text {Subst}\left (\int \frac {\sqrt {1+\frac {2 a \sqrt {c} e x^2}{\sqrt {-a} \left (c d-\frac {a \sqrt {c} e}{\sqrt {-a}}\right )}}}{\sqrt {1-x^2}} \, dx,x,\frac {\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}}{\sqrt {2}}\right )}{15 \sqrt {-a} \sqrt {c} \sqrt {\frac {c (d+e x)}{c d-\frac {a \sqrt {c} e}{\sqrt {-a}}}} \sqrt {a+c x^2}}+\frac {\left (4 a d \left (a+\frac {c d^2}{e^2}\right ) \sqrt {\frac {c (d+e x)}{c d-\frac {a \sqrt {c} e}{\sqrt {-a}}}} \sqrt {1+\frac {c x^2}{a}}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {1-x^2} \sqrt {1+\frac {2 a \sqrt {c} e x^2}{\sqrt {-a} \left (c d-\frac {a \sqrt {c} e}{\sqrt {-a}}\right )}}} \, dx,x,\frac {\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}}{\sqrt {2}}\right )}{15 \sqrt {-a} \sqrt {c} \sqrt {d+e x} \sqrt {a+c x^2}} \\ & = -\frac {4 d \sqrt {d+e x} \sqrt {a+c x^2}}{15 e}+\frac {2 (d+e x)^{3/2} \sqrt {a+c x^2}}{5 e}-\frac {4 \sqrt {-a} \left (3 a-\frac {c d^2}{e^2}\right ) \sqrt {d+e x} \sqrt {1+\frac {c x^2}{a}} E\left (\sin ^{-1}\left (\frac {\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}}{\sqrt {2}}\right )|-\frac {2 a e}{\sqrt {-a} \sqrt {c} d-a e}\right )}{15 \sqrt {c} \sqrt {\frac {\sqrt {c} (d+e x)}{\sqrt {c} d+\sqrt {-a} e}} \sqrt {a+c x^2}}-\frac {4 \sqrt {-a} d \left (a+\frac {c d^2}{e^2}\right ) \sqrt {\frac {\sqrt {c} (d+e x)}{\sqrt {c} d+\sqrt {-a} e}} \sqrt {1+\frac {c x^2}{a}} F\left (\sin ^{-1}\left (\frac {\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}}{\sqrt {2}}\right )|-\frac {2 a e}{\sqrt {-a} \sqrt {c} d-a e}\right )}{15 \sqrt {c} \sqrt {d+e x} \sqrt {a+c x^2}} \\ \end{align*}

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 24.09 (sec) , antiderivative size = 521, normalized size of antiderivative = 1.44 \[ \int \sqrt {d+e x} \sqrt {a+c x^2} \, dx=\frac {\sqrt {d+e x} \left (\frac {2 (d+3 e x) \left (a+c x^2\right )}{e}-\frac {4 \left (e^2 \sqrt {-d-\frac {i \sqrt {a} e}{\sqrt {c}}} \left (c d^2-3 a e^2\right ) \left (a+c x^2\right )+\sqrt {c} \left (-i c^{3/2} d^3+\sqrt {a} c d^2 e+3 i a \sqrt {c} d e^2-3 a^{3/2} e^3\right ) \sqrt {\frac {e \left (\frac {i \sqrt {a}}{\sqrt {c}}+x\right )}{d+e x}} \sqrt {-\frac {\frac {i \sqrt {a} e}{\sqrt {c}}-e x}{d+e x}} (d+e x)^{3/2} E\left (i \text {arcsinh}\left (\frac {\sqrt {-d-\frac {i \sqrt {a} e}{\sqrt {c}}}}{\sqrt {d+e x}}\right )|\frac {\sqrt {c} d-i \sqrt {a} e}{\sqrt {c} d+i \sqrt {a} e}\right )-\sqrt {a} \sqrt {c} e \left (c d^2+4 i \sqrt {a} \sqrt {c} d e-3 a e^2\right ) \sqrt {\frac {e \left (\frac {i \sqrt {a}}{\sqrt {c}}+x\right )}{d+e x}} \sqrt {-\frac {\frac {i \sqrt {a} e}{\sqrt {c}}-e x}{d+e x}} (d+e x)^{3/2} \operatorname {EllipticF}\left (i \text {arcsinh}\left (\frac {\sqrt {-d-\frac {i \sqrt {a} e}{\sqrt {c}}}}{\sqrt {d+e x}}\right ),\frac {\sqrt {c} d-i \sqrt {a} e}{\sqrt {c} d+i \sqrt {a} e}\right )\right )}{c e^3 \sqrt {-d-\frac {i \sqrt {a} e}{\sqrt {c}}} (d+e x)}\right )}{15 \sqrt {a+c x^2}} \]

[In]

Integrate[Sqrt[d + e*x]*Sqrt[a + c*x^2],x]

[Out]

(Sqrt[d + e*x]*((2*(d + 3*e*x)*(a + c*x^2))/e - (4*(e^2*Sqrt[-d - (I*Sqrt[a]*e)/Sqrt[c]]*(c*d^2 - 3*a*e^2)*(a
+ c*x^2) + Sqrt[c]*((-I)*c^(3/2)*d^3 + Sqrt[a]*c*d^2*e + (3*I)*a*Sqrt[c]*d*e^2 - 3*a^(3/2)*e^3)*Sqrt[(e*((I*Sq
rt[a])/Sqrt[c] + x))/(d + e*x)]*Sqrt[-(((I*Sqrt[a]*e)/Sqrt[c] - e*x)/(d + e*x))]*(d + e*x)^(3/2)*EllipticE[I*A
rcSinh[Sqrt[-d - (I*Sqrt[a]*e)/Sqrt[c]]/Sqrt[d + e*x]], (Sqrt[c]*d - I*Sqrt[a]*e)/(Sqrt[c]*d + I*Sqrt[a]*e)] -
 Sqrt[a]*Sqrt[c]*e*(c*d^2 + (4*I)*Sqrt[a]*Sqrt[c]*d*e - 3*a*e^2)*Sqrt[(e*((I*Sqrt[a])/Sqrt[c] + x))/(d + e*x)]
*Sqrt[-(((I*Sqrt[a]*e)/Sqrt[c] - e*x)/(d + e*x))]*(d + e*x)^(3/2)*EllipticF[I*ArcSinh[Sqrt[-d - (I*Sqrt[a]*e)/
Sqrt[c]]/Sqrt[d + e*x]], (Sqrt[c]*d - I*Sqrt[a]*e)/(Sqrt[c]*d + I*Sqrt[a]*e)]))/(c*e^3*Sqrt[-d - (I*Sqrt[a]*e)
/Sqrt[c]]*(d + e*x))))/(15*Sqrt[a + c*x^2])

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(601\) vs. \(2(290)=580\).

Time = 2.70 (sec) , antiderivative size = 602, normalized size of antiderivative = 1.66

method result size
risch \(\frac {2 \left (3 e x +d \right ) \sqrt {e x +d}\, \sqrt {c \,x^{2}+a}}{15 e}+\frac {2 \left (\frac {8 a d e \left (\frac {d}{e}-\frac {\sqrt {-a c}}{c}\right ) \sqrt {\frac {x +\frac {d}{e}}{\frac {d}{e}-\frac {\sqrt {-a c}}{c}}}\, \sqrt {\frac {x -\frac {\sqrt {-a c}}{c}}{-\frac {d}{e}-\frac {\sqrt {-a c}}{c}}}\, \sqrt {\frac {x +\frac {\sqrt {-a c}}{c}}{-\frac {d}{e}+\frac {\sqrt {-a c}}{c}}}\, F\left (\sqrt {\frac {x +\frac {d}{e}}{\frac {d}{e}-\frac {\sqrt {-a c}}{c}}}, \sqrt {\frac {-\frac {d}{e}+\frac {\sqrt {-a c}}{c}}{-\frac {d}{e}-\frac {\sqrt {-a c}}{c}}}\right )}{\sqrt {c e \,x^{3}+c d \,x^{2}+a e x +a d}}+\frac {2 \left (3 e^{2} a -c \,d^{2}\right ) \left (\frac {d}{e}-\frac {\sqrt {-a c}}{c}\right ) \sqrt {\frac {x +\frac {d}{e}}{\frac {d}{e}-\frac {\sqrt {-a c}}{c}}}\, \sqrt {\frac {x -\frac {\sqrt {-a c}}{c}}{-\frac {d}{e}-\frac {\sqrt {-a c}}{c}}}\, \sqrt {\frac {x +\frac {\sqrt {-a c}}{c}}{-\frac {d}{e}+\frac {\sqrt {-a c}}{c}}}\, \left (\left (-\frac {d}{e}-\frac {\sqrt {-a c}}{c}\right ) E\left (\sqrt {\frac {x +\frac {d}{e}}{\frac {d}{e}-\frac {\sqrt {-a c}}{c}}}, \sqrt {\frac {-\frac {d}{e}+\frac {\sqrt {-a c}}{c}}{-\frac {d}{e}-\frac {\sqrt {-a c}}{c}}}\right )+\frac {\sqrt {-a c}\, F\left (\sqrt {\frac {x +\frac {d}{e}}{\frac {d}{e}-\frac {\sqrt {-a c}}{c}}}, \sqrt {\frac {-\frac {d}{e}+\frac {\sqrt {-a c}}{c}}{-\frac {d}{e}-\frac {\sqrt {-a c}}{c}}}\right )}{c}\right )}{\sqrt {c e \,x^{3}+c d \,x^{2}+a e x +a d}}\right ) \sqrt {\left (e x +d \right ) \left (c \,x^{2}+a \right )}}{15 e \sqrt {e x +d}\, \sqrt {c \,x^{2}+a}}\) \(602\)
elliptic \(\frac {\sqrt {\left (e x +d \right ) \left (c \,x^{2}+a \right )}\, \left (\frac {2 x \sqrt {c e \,x^{3}+c d \,x^{2}+a e x +a d}}{5}+\frac {2 d \sqrt {c e \,x^{3}+c d \,x^{2}+a e x +a d}}{15 e}+\frac {16 a d \left (\frac {d}{e}-\frac {\sqrt {-a c}}{c}\right ) \sqrt {\frac {x +\frac {d}{e}}{\frac {d}{e}-\frac {\sqrt {-a c}}{c}}}\, \sqrt {\frac {x -\frac {\sqrt {-a c}}{c}}{-\frac {d}{e}-\frac {\sqrt {-a c}}{c}}}\, \sqrt {\frac {x +\frac {\sqrt {-a c}}{c}}{-\frac {d}{e}+\frac {\sqrt {-a c}}{c}}}\, F\left (\sqrt {\frac {x +\frac {d}{e}}{\frac {d}{e}-\frac {\sqrt {-a c}}{c}}}, \sqrt {\frac {-\frac {d}{e}+\frac {\sqrt {-a c}}{c}}{-\frac {d}{e}-\frac {\sqrt {-a c}}{c}}}\right )}{15 \sqrt {c e \,x^{3}+c d \,x^{2}+a e x +a d}}+\frac {2 \left (\frac {2 a e}{5}-\frac {2 d^{2} c}{15 e}\right ) \left (\frac {d}{e}-\frac {\sqrt {-a c}}{c}\right ) \sqrt {\frac {x +\frac {d}{e}}{\frac {d}{e}-\frac {\sqrt {-a c}}{c}}}\, \sqrt {\frac {x -\frac {\sqrt {-a c}}{c}}{-\frac {d}{e}-\frac {\sqrt {-a c}}{c}}}\, \sqrt {\frac {x +\frac {\sqrt {-a c}}{c}}{-\frac {d}{e}+\frac {\sqrt {-a c}}{c}}}\, \left (\left (-\frac {d}{e}-\frac {\sqrt {-a c}}{c}\right ) E\left (\sqrt {\frac {x +\frac {d}{e}}{\frac {d}{e}-\frac {\sqrt {-a c}}{c}}}, \sqrt {\frac {-\frac {d}{e}+\frac {\sqrt {-a c}}{c}}{-\frac {d}{e}-\frac {\sqrt {-a c}}{c}}}\right )+\frac {\sqrt {-a c}\, F\left (\sqrt {\frac {x +\frac {d}{e}}{\frac {d}{e}-\frac {\sqrt {-a c}}{c}}}, \sqrt {\frac {-\frac {d}{e}+\frac {\sqrt {-a c}}{c}}{-\frac {d}{e}-\frac {\sqrt {-a c}}{c}}}\right )}{c}\right )}{\sqrt {c e \,x^{3}+c d \,x^{2}+a e x +a d}}\right )}{\sqrt {e x +d}\, \sqrt {c \,x^{2}+a}}\) \(623\)
default \(\text {Expression too large to display}\) \(1162\)

[In]

int((e*x+d)^(1/2)*(c*x^2+a)^(1/2),x,method=_RETURNVERBOSE)

[Out]

2/15*(3*e*x+d)*(e*x+d)^(1/2)*(c*x^2+a)^(1/2)/e+2/15/e*(8*a*d*e*(d/e-(-a*c)^(1/2)/c)*((x+d/e)/(d/e-(-a*c)^(1/2)
/c))^(1/2)*((x-(-a*c)^(1/2)/c)/(-d/e-(-a*c)^(1/2)/c))^(1/2)*((x+(-a*c)^(1/2)/c)/(-d/e+(-a*c)^(1/2)/c))^(1/2)/(
c*e*x^3+c*d*x^2+a*e*x+a*d)^(1/2)*EllipticF(((x+d/e)/(d/e-(-a*c)^(1/2)/c))^(1/2),((-d/e+(-a*c)^(1/2)/c)/(-d/e-(
-a*c)^(1/2)/c))^(1/2))+2*(3*a*e^2-c*d^2)*(d/e-(-a*c)^(1/2)/c)*((x+d/e)/(d/e-(-a*c)^(1/2)/c))^(1/2)*((x-(-a*c)^
(1/2)/c)/(-d/e-(-a*c)^(1/2)/c))^(1/2)*((x+(-a*c)^(1/2)/c)/(-d/e+(-a*c)^(1/2)/c))^(1/2)/(c*e*x^3+c*d*x^2+a*e*x+
a*d)^(1/2)*((-d/e-(-a*c)^(1/2)/c)*EllipticE(((x+d/e)/(d/e-(-a*c)^(1/2)/c))^(1/2),((-d/e+(-a*c)^(1/2)/c)/(-d/e-
(-a*c)^(1/2)/c))^(1/2))+(-a*c)^(1/2)/c*EllipticF(((x+d/e)/(d/e-(-a*c)^(1/2)/c))^(1/2),((-d/e+(-a*c)^(1/2)/c)/(
-d/e-(-a*c)^(1/2)/c))^(1/2))))*((e*x+d)*(c*x^2+a))^(1/2)/(e*x+d)^(1/2)/(c*x^2+a)^(1/2)

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.09 (sec) , antiderivative size = 229, normalized size of antiderivative = 0.63 \[ \int \sqrt {d+e x} \sqrt {a+c x^2} \, dx=\frac {2 \, {\left (2 \, {\left (c d^{3} + 9 \, a d e^{2}\right )} \sqrt {c e} {\rm weierstrassPInverse}\left (\frac {4 \, {\left (c d^{2} - 3 \, a e^{2}\right )}}{3 \, c e^{2}}, -\frac {8 \, {\left (c d^{3} + 9 \, a d e^{2}\right )}}{27 \, c e^{3}}, \frac {3 \, e x + d}{3 \, e}\right ) + 6 \, {\left (c d^{2} e - 3 \, a e^{3}\right )} \sqrt {c e} {\rm weierstrassZeta}\left (\frac {4 \, {\left (c d^{2} - 3 \, a e^{2}\right )}}{3 \, c e^{2}}, -\frac {8 \, {\left (c d^{3} + 9 \, a d e^{2}\right )}}{27 \, c e^{3}}, {\rm weierstrassPInverse}\left (\frac {4 \, {\left (c d^{2} - 3 \, a e^{2}\right )}}{3 \, c e^{2}}, -\frac {8 \, {\left (c d^{3} + 9 \, a d e^{2}\right )}}{27 \, c e^{3}}, \frac {3 \, e x + d}{3 \, e}\right )\right ) + 3 \, {\left (3 \, c e^{3} x + c d e^{2}\right )} \sqrt {c x^{2} + a} \sqrt {e x + d}\right )}}{45 \, c e^{3}} \]

[In]

integrate((e*x+d)^(1/2)*(c*x^2+a)^(1/2),x, algorithm="fricas")

[Out]

2/45*(2*(c*d^3 + 9*a*d*e^2)*sqrt(c*e)*weierstrassPInverse(4/3*(c*d^2 - 3*a*e^2)/(c*e^2), -8/27*(c*d^3 + 9*a*d*
e^2)/(c*e^3), 1/3*(3*e*x + d)/e) + 6*(c*d^2*e - 3*a*e^3)*sqrt(c*e)*weierstrassZeta(4/3*(c*d^2 - 3*a*e^2)/(c*e^
2), -8/27*(c*d^3 + 9*a*d*e^2)/(c*e^3), weierstrassPInverse(4/3*(c*d^2 - 3*a*e^2)/(c*e^2), -8/27*(c*d^3 + 9*a*d
*e^2)/(c*e^3), 1/3*(3*e*x + d)/e)) + 3*(3*c*e^3*x + c*d*e^2)*sqrt(c*x^2 + a)*sqrt(e*x + d))/(c*e^3)

Sympy [F]

\[ \int \sqrt {d+e x} \sqrt {a+c x^2} \, dx=\int \sqrt {a + c x^{2}} \sqrt {d + e x}\, dx \]

[In]

integrate((e*x+d)**(1/2)*(c*x**2+a)**(1/2),x)

[Out]

Integral(sqrt(a + c*x**2)*sqrt(d + e*x), x)

Maxima [F]

\[ \int \sqrt {d+e x} \sqrt {a+c x^2} \, dx=\int { \sqrt {c x^{2} + a} \sqrt {e x + d} \,d x } \]

[In]

integrate((e*x+d)^(1/2)*(c*x^2+a)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(c*x^2 + a)*sqrt(e*x + d), x)

Giac [F]

\[ \int \sqrt {d+e x} \sqrt {a+c x^2} \, dx=\int { \sqrt {c x^{2} + a} \sqrt {e x + d} \,d x } \]

[In]

integrate((e*x+d)^(1/2)*(c*x^2+a)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(c*x^2 + a)*sqrt(e*x + d), x)

Mupad [F(-1)]

Timed out. \[ \int \sqrt {d+e x} \sqrt {a+c x^2} \, dx=\int \sqrt {c\,x^2+a}\,\sqrt {d+e\,x} \,d x \]

[In]

int((a + c*x^2)^(1/2)*(d + e*x)^(1/2),x)

[Out]

int((a + c*x^2)^(1/2)*(d + e*x)^(1/2), x)